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Abstract
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rent incompatibility between emission targets and economic growth and the need for
greener technologies. Moreover, there is no evidence for specific convergence dynamics
in the European Union, the OECD, or the countries that ratified the Kyoto Protocol.
The institutional frameworks implemented in industrialized countries did not induce
faster convergence among developed economies.

Keywords: CO2 emissions, production-based inventories, carbon footprint, conver-
gence test, half-life.

JEL-codes: F18, F64, O44, Q54, Q56.

∗ The authors acknowledge support of the NCCR Trade Regulation, grant No. 51NF40-151576, University
of Bern.

† Corresponding author : World Trade Institute, University of Bern, Hallerstrasse 6, CH-3012 Bern
(Switzerland). E-mail address: octavio.fernandez@wti.org.

‡ World Trade Institute, University of Bern, Hallerstrasse 6, CH-3012 Bern (Switzerland). E-mail address:
doris.oberdabernig@wti.org.

§ World Trade Institute, University of Bern, Hallerstrasse 6, CH-3012 Bern (Switzerland). E-mail address:
patrick.tomberger@wti.org.



1 Introduction

Global warming and its consequences are at the center of current policy debate on the

sustainability of economic development. The Paris Agreement stipulates holding the global

average temperature below 2◦C above pre-industrial levels to bring climate change under

control;1 for this to happen, the 194 countries that signed the agreement are compelled

to reach the global peak of greenhouse gas (GHG) emissions as soon as possible (Paris

Agreement, Art. 2 and 4). The underlying question is how to make economic growth

compatible with limited or decreased pollution, particularly GHG emissions.

The Environmental Kuznets Curve (EKC) predicts that pollution increases with rising

per capita income and falls with rising income after a peak in emissions has been reached.

However, the existence of a turning point in GHG emissions after which emissions start

to decrease with economic growth has not been unanimously confirmed by empirical re-

search. Especially for Carbon Dioxide (CO2) emissions the existence of such peak has

often been rejected.2 Against this background, it is important to know whether global

carbon emissions will eventually reach a limit; only then the growth rate of atmospheric

concentrations of CO2 will stabilize.

The patterns of convergence of CO2 emissions per capita towards a certain emission level

and the height of this level have important implications for the design of the international

regulatory framework. Reliable information on whether the steady state of emissions is

global or country-specific and on how long it will take for countries to reach this steady

state can strengthen the ongoing policy debate. Related to this, the convergence dynam-

ics of carbon emissions derived from both national production and consumption activities

should be better understood when revising environmental responsibility, as they charac-

terize the path of emissions associated with further economic development in a globalized

context. Increasingly fragmented value chains allow the geographical location of produc-

tion stages to differ from the place of final consumption. A mere focus on territorial-based

emissions neglects the importance of trade in intermediates and carbon leakage, i.e. the

shift of highly pollutant industries from countries with stringent environmental regulation

to countries with less strict regulation (e.g. Aichele and Felbermayr, 2015; Babiker, 2005;

Fernández-Amador et al., 2016).

1 See Knutti and Fischer (2015) for a critical analysis of the 2◦C target.
2 Empirical studies that investigate the existence of an EKC in CO2 emissions usually fail to find such a

relationship in samples covering a large group of countries (see e.g. Stern, 2004, and Stern, 2017, for
exhaustive surveys or Fernández-Amador et al., 2017, for a survey on empirical applications). Aslanidis
and Iranzo (2009) and Fernández-Amador et al. (2017) provide evidence that the income elasticity of
CO2 emissions decreases as income per capita rises above a threshold level though emissions continue
growing, challenging sustainability.
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In addition, it is relevant to understand to what extent the dynamics of international con-

vergence of emissions per capita is driven by convergence in carbon efficiency worldwide.

The adoption of more environmentally friendly technologies will lower carbon intensities,

which is particularly relevant for developing countries, as they need to combine remark-

able economic growth targets with emission reduction goals.3 If international technology

transfers occur and emerging economies adopt greener production methods, the global pro-

duction network will eventually become more sustainable, and CO2 emissions per value

added will converge across countries. This will in turn promote convergence in emissions

per capita.

The assessment of convergence in CO2 emissions has received considerable attention in

the empirical literature.4 Most studies tested for convergence in CO2 per capita across

different groups of countries, but their results remain broadly inconclusive.5 In contrast,

a smaller number of studies investigated convergence in carbon efficiency, pointing invari-

ably towards the existence of convergence across countries.6 However, all these studies

focused on production-based emissions, while cross-country convergence in CO2 embodied

in consumption has not yet been investigated.7

We evaluate international convergence in CO2 emissions per capita and per value added

derived from national production- and consumption-based inventories worldwide. We put

forward a Bayesian assessment of β-convergence that is based on the theoretical model by

Ordás Criado et al. (2011) and extends the empirical model developed by these authors.

Our model also allows for potential group-specific dynamics of convergence using Bayesian

shrinkage priors. Our convergence test is robust to heteroscedasticity and accounts for

potential endogeneity between the growth rates of emissions and GDP per capita by

means of instrumental variables (IV) estimation.

3 The Paris Agreement recognizes the need to support developing countries in order to facilitate the
effective implementation of the objectives identified in the Agreement (Paris Agreement, Art. 2).

4 See Pettersson et al. (2014) and Stern (2017) for comprehensive surveys of the literature on convergence
in pollution emissions.

5 The findings of the literature range from evidence for convergence (Strazicich and List, 2003; Nguyen,
2005; Ezcurra, 2007; Romero-Ávila, 2008; Lee et al., 2008; Westerlund and Basher, 2008; Lee and
Chang, 2009; Brock and Taylor, 2010; Jobert et al., 2010; Huang and Meng, 2013; Yavuz and Yilanci,
2013; Anjum et al., 2014; Hao et al., 2015; Wu et al., 2016; Zhao et al., 2015) over the existence of
convergence clubs (Nguyen, 2005; Aldy, 2006; Lee and Chang, 2008; Panopoulou and Pantelidis, 2009;
Barassi et al., 2011; Ordás Criado and Grether, 2011; Camarero et al., 2013; Herrerias, 2013; Wang
et al., 2014; Burnett, 2016) to no evidence for convergence (Aldy, 2007; Barassi et al., 2008; Nourry,
2009).

6 See Anjum et al. (2014), Camarero et al. (2013) and Panopoulou and Pantelidis (2009).
7 Aldy (2007) investigates convergence of CO2 emissions across US states. This is the only study so far

that also covers consumption inventories. The author did not find evidence for convergence for either
CO2 production or for CO2 consumption per capita. In contrast to Aldy, our study covers economies
at different development states, thus being the first one to evaluate global convergence patterns in CO2

consumption.
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Our contribution is twofold. First, we assess international convergence in production- and

consumption-based carbon emissions for the first time by using a comprehensive dataset

on comparable CO2 emission inventories recently published by Fernández-Amador et al.

(2016). The dataset covers 178 economies (grouped in 66 countries and 12 composite re-

gions) and extends over 14 years after the Kyoto Protocol ratification.The focus on both

inventories allows to account for the increasing detachment between CO2 per capita gen-

erated by production activities and CO2 embodied in final consumption in a period of

rapidly expanding global production networks, which permit cross-border sourcing of car-

bon in final consumption. In addition, we analyze CO2 emissions per value added (carbon

intensity or efficiency) and draw conclusions on whether the detected patterns are driven

by efficiency effects. While CO2 per capita offers important insights on convergence stem-

ming from the expansion of production or consumption in a country, convergence in CO2

intensity provides information on whether countries that use more pollutant production

methods eventually catch up with environmentally more efficient economies.

Second, our structural model presents some interesting features. It uses a Bayesian

stochastic search variable selection prior (SSVS, George and McCulloch, 1993) to test

for the existence of group-specific convergence dynamics; the groups comprise the Eu-

ropean Union (EU), the OECD, and the countries that ratified Annex I of the Kyoto

Protocol. The model is robust to heteroscedasticity; it is based on Student-t-distributed

errors for which the degrees of freedom are estimated endogenously. Furthermore, for the

first time in the context of t-distributed errors, it formulates a flexible Cholesky-prior to

instrument potentially endogenous regressors; this prior has been proposed by Lopes and

Polson (2014) in the framework of normal distributions.

Our results point to the existence of country-specific conditional convergence in all four

emission inventories. The speed of convergence implies a half-life of 2.8–3.1 years for

emissions per capita and 3.2–5 years for emission intensities. Yet, convergence towards

global steady states, though conditioned on the political and economic structures, is much

slower for emission intensities, implying a half-life of 20–24 years, whereas emissions per

capita do not show convergence towards such global steady states. Moreover, we do

not find support for the existence of group-specific convergence dynamics for countries

belonging to the OECD, the EU, or the Annex I of the Kyoto Protocol. These findings

evince the ineffectiveness of environmental policies implemented in developed economies

and pose doubts on the feasibility of an effective global action against climate change.

The next section reviews the literature on convergence. Section 3 describes the data. In

section 4, we explain the specification of the convergence test. Section 5 presents the

results and section 6 concludes.
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2 Literature review

Convergence tests received considerable attention in the empirical literature evaluating

the predictions of Solow’s (1956) growth model. Early studies tested whether countries

starting out from low income levels experienced higher subsequent growth rates, either con-

ditional on or unconditional of control variables (β-convergence).8 Later studies suggested

that β-convergence could be driven by regression to the mean (see Friedman, 1992; Quah,

1993) and tested whether the dispersion of income across countries was narrowing over

time (σ-convergence).9 Yet, Sala-i-Martin (1996) pointed out the merits of β-convergence

for providing insights into growth dynamics. Although β-convergence is not sufficient

for σ-convergence, it is a necessary condition (Sala-i-Martin, 1996; Young et al., 2008)

and provides valuable information whenever alternative tests for convergence cannot be

applied.10

Besides cross-sectional convergence tests, also time-series approaches have been developed.

Several authors investigated stochastic convergence of income levels via unit root testing,

that is, whether income shocks are of permanent or temporary nature.11 While these

approaches got increasingly popular as more data became available over time, Bernard and

Durlauf (1996) pointed out that they are grounded on the assumption that the economies

in the sample are near their long-run equilibria. In this sense, the use of time series tests

may be invalid if the data are driven by transition dynamics.12

Similar to the Solow model for economic growth, there are theoretical models that predict

convergence of pollution emission levels across countries over time (e.g. Brock and Taylor,

2010; Ordás Criado et al., 2011). Like the Solow model, these boil down econometrically

to an equation of conditional β-convergence.

8 Earlier studies focused on unconditional convergence, while more recent studies tested for conditional
convergence, i.e. convergence after allowing for heterogeneity across countries by accounting for addi-
tional determinants of economic growth. While unconditional convergence was often found for OECD
countries it was generally rejected for samples including non-OECD countries. If countries converge to
different steady states, unconditional convergence models might result in biased coefficient estimates as
the model used for estimation is miss-specified (see Barro and Sala-i Martin, 2004). See for example
Baumol (1986); Barro (1991); Barro and Sala-i Martin (1992); Mankiw et al. (1992); Barro and Sala-i
Martin (2004).

9 See for example Quah (1993); Barro and Sala-i Martin (1992); Sala-i-Martin (1996); Young et al. (2008).
Phillips and Sul (2007b) developed a test for identifying club convergence groups, which corresponds to
a test of conditional σ-convergence (see Phillips and Sul, 2007b). Phillips and Sul (2007a) provided a
short empirical application of the test, to convergence in economic growth.

10 See e.g. Ravallion (2003) who applies β-convergence tests to international income inequality.
11 See for example Carlino and Mills (1993); Quah (1993); Bernard and Durlauf (1996); Evans and Karras

(1996).
12 See also Panopoulou and Pantelidis (2009), Jobert et al. (2010) and Ordás Criado and Grether (2011)

for surveys on β-, σ- and stochastic convergence.
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Empirical studies on convergence in CO2 production per capita led to heterogeneous con-

clusions. For OECD countries, Strazicich and List (2003), Romero-Ávila (2008), Lee et al.

(2008), Lee and Chang (2009), Jobert et al. (2010), and Yavuz and Yilanci (2013) found

evidence for convergence. Lee and Chang (2008) and Barassi et al. (2011) reported con-

vergence only for a subgroup of countries, and Barassi et al. (2008) did not detect evidence

for convergence.13

A growing number of studies included developing countries in their samples. Ezcurra

(2007), Westerlund and Basher (2008), Brock and Taylor (2010), and Anjum et al. (2014)

provided evidence for convergence across countries of different income status. Panopoulou

and Pantelidis (2009), Ordás Criado and Grether (2011), and Herrerias (2013) detected

several convergence clubs,14 and Nguyen (2005) and Aldy (2006) found convergence only

in sub-groups or clubs of developed economies. Nourry (2009) failed to detect evidence

for cross-country convergence.

Some authors focused on convergence across regions in China and the US. For China,

Huang and Meng (2013) detected overall convergence and Wu et al. (2016) found evidence

for club convergence. For the US, Burnett (2016) found a club of 26 converging states,

while convergence for the US as a whole was rejected. While all these studies focused on

CO2 production inventories, Aldy (2007) additionally assessed consumption of CO2 per

capita in the US states, but did not find convergence in either measure.

The heterogeneous findings of the literature on CO2 convergence are in line with the mixed

evidence for the existence of an environmental Kuznets curve (EKC). The EKC hypothesis

suggests that as national income levels rise, pollution first increases with income, but after

a certain level of income has been reached this mechanism is reversed.15 If income levels

are positively correlated with CO2 emissions, the existence of an EKC relationship would

ultimately lead to emission convergence (Stern, 2017). However, even though empirical

studies find a positive relationship between economic growth and CO2 emissions, the

evidence favoring an EKC-type relationship is restricted to time-series or panel studies

covering OECD economies.16

13 Studies for OECD countries focused mainly on stochastic and β-convergence. For more details on the
concept of convergence used by the respective studies, see Table A.1 in the Appendix.

14 Panopoulou and Pantelidis (2009) and Herrerias (2013) applied the Phillips and Sul (2007b) test for
convergence clubs. Ordás Criado and Grether (2011) found evidence for income-specific and regional
convergence clubs especially for the sub-period 1980–2000.

15 See Dasgupta et al. (2002), Kaika and Zervas (2010), and Stern (2004, 2017) for reviews and Fernández-
Amador et al. (2017) for a summary of the most recent evidence.

16 Schmalensee et al. (1998) is an exception, finding support for an inverse-U relationship using nonpara-
metric techniques. More recently, Aslanidis and Iranzo (2009) and Fernández-Amador et al. (2017)
found that the income-elasticity of CO2 emissions decreases slightly after income per capita passes a
certain threshold, such that relative decoupling increases with economic growth, though there is no ev-
idence of absolute decoupling and an EKC relationship. Fernández-Amador et al. (2017) also provided
evidence for a similar pattern in CO2 consumption-based inventories.
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Improvements in carbon efficiencies (i.e. CO2 per value added) are an important require-

ment for reaching the turning point postulated by the EKC. High-income countries gen-

erally are more carbon efficient than less developed economies (Fernández-Amador et al.,

2016). This can be explained by their stronger preferences for a cleaner environment,

better access to cleaner technology and potential for carbon leakage. Carbon leakage will

impede convergence in carbon emission intensities, as firms with larger emission intensity

might relocate to countries with less stringent environmental regulation. However, if the

rapid increase in international trade induces transfers of green technology to less developed

countries, their carbon efficiency could improve more rapidly (Grossman and Helpman,

1995), which would contribute to convergence in carbon intensities. Thus, although most

studies focused on CO2 emissions per capita, evaluating convergence in carbon intensities

provides additional insights in the convergence patterns across countries.17

Among the existing studies on convergence in the intensity of CO2 emissions from produc-

tion activities, Camarero et al. (2013) identified four convergence clubs among 22 OECD

countries using the test for club-convergences developed by Phillips and Sul (2007b). An-

jum et al. (2014) and Panopoulou and Pantelidis (2009) provided evidence for convergence

in a panel of 136 and 128 countries, respectively. Focusing on Chinese regions, the results

of Hao et al. (2015) and Zhao et al. (2015) suggest convergence of emission intensity, while

Wang et al. (2014) found evidence for club convergence.18

3 Data

CO2 emissions per capita and per value added derived from production and consumption

inventories are available from the emissions database constructed by Fernández-Amador

et al. (2016). Following Fernández-Amador et al. (2016), we define carbon intensities as

carbon per value added rather than per GDP. For production inventories, value added is

computed as value added embodied in production, whereas for consumption-based inven-

tories, it is calculated as value added embodied in consumption. Therefore, both emission

inventories and value added are measured at the same stage of the supply chain. The

dataset consists of a balanced panel of national production- and consumption-based car-

bon emission inventories from fossil fuel combustion covering 66 countries and 12 composite

regions (encompassing a total of 178 economies) over the years 1997, 2001, 2004, 2007 and

2011 (390 data-points). It relies on input-output, trade and energy data of several releases

of the Global Trade Analysis Project (GTAP) database.

17 Anjum et al. (2014) reported that the negative correlation between initial emission and subsequent
emission growth is stronger for CO2 intensity than for CO2 per capita.

18 All of these studies define CO2 intensity as CO2 per GDP. In our analysis we refer to CO2 intensity as
CO2 per value added.
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To test for the presence of β-convergence, we compute the growth rates of the four emission

inventories, which we consecutively use as dependent variables in the empirical analysis.

Since the data-points are unequally spaced in time (3 to 4 periods), we calculate the

average growth rate of emissions between years t − s and t, where s is the number of

periods between two observations.19 The resulting average annual growth rates allow to

evaluate convergence in the large-N, small-T panel dataset, for which time-series methods

cannot be used.20

Our baseline control variables are derived from the theoretical model by Ordás Criado et al.

(2011) (equations 28 and 29 in their paper) and include the growth rate of purchasing-

power parity (ppp) adjusted real GDP per capita over the period considered (based on

data from the World Development Indicators, WDI, dataset) and the lagged level of CO2

emissions, which should capture the scale effect of economic growth on emissions and

potential convergence forces, respectively. The lagged level of ppp-adjusted GDP per

capita is added in order to capture potential non-linearities in the relationship between

economic growth and emissions.

To limit potential omitted variable bias (see Barro and Sala-i Martin, 2004), we add a

large set of additional control variables capturing economic, structural and institutional

characteristics of the individuals in the sample, and include individual-, and time dummies

(see Table A.2 in the Appendix for details). We derive trade flows as a share of GDP

as well as value added shares of different sectors of the economy (agriculture, energy,

light manufacturing, heavy manufacturing, textiles, water services, construction, trade

and transport, and remaining services) from the GTAP database. Data on population

density, the share of fossil fuels and nuclear energy in total energy production, and rents

from fossil fuel production as a share of GDP are available from the WDI database. A

democracy index is sourced from the Polity IV database. Finally, in order to investigate

group-specific convergence patterns, we generate dummy variables for members of the EU,

OECD, and Annex I of the Kyoto Protocol.

19 This corresponds to calculating average yearly growth rates. For a similar method see Ravallion (2003),
who accounts for the unequal spacing in time between measures of income inequality for large-N, small-
T panel data by regressing the difference in inequality between time t and the initial period t1 on
a constant and initial inequality in time t1, both multiplied by a time trend (t − 1). In contrast to
Ravallion’s data our panel is balanced in the sense that for every individual we observe all variables in
the same points in time. Thus, we can also exploit the variation of the data across time and use initial
emissions in year t− s instead of in year t1 as a regressor.

20 Bernard and Durlauf (1996) pointed out that the power of time series tests may be weak when the
dynamics do not occur near the steady state. In this sense, time-series approaches to test for stochastic
convergence may not be particularly suitable in our context, because data on CO2 emissions covering
a global sample of countries are very likely to be driven by transition dynamics rather than being near
the steady state.
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4 Econometric model

We develop a Bayesian test for beta convergence as an extension of the model proposed

by Ordás Criado et al. (2011).21 Let Eit be, alternatively, the natural logarithm of CO2

emissions per capita or per value added in country i at time t, where i ⊆ [1, . . . , N ] and

t ⊆ [1, . . . , T ], and let Gi,t,s = (Ei,t − Ei,t−s)/s be the average growth rate of Ei over the

period t − s and t. The test is defined by the following recursive structural model with

selection equation:

Gi,t,s = βEi,t−s + π0gi,t,s + π1Yi,t−s +
∑

[λrzr,i,t−s] + (1)

+δt + αi +
∑

[βjdjEi,t−s] + ε1,it

gi,t,s = αiv + βivL(gi,t,s) + ε2,it (2)

(ε1,it, ε2,it) ∼ t(0,Σ, ν) (3)

The growth rate of emissions (Gi,t,s) depends on the logarithm of the level of emissions in

country i at period t− s (Ei,t−s), the growth rate of real GDP per capita over the period

t − s and t (gi,t,s), the logarithm of real GDP per capita of country i in t − s (Yi,t−s),

a set of control variables as described in the data section (zj,i,t−s), time effects (δt), and

individual dummies (αi). Furthermore, dj are dummy variables for group membership in

the EU, OECD and Annex I of the Kyoto Protocol. The parameter associated with Ei,t−s

is the parameter of interest; in particular, β < 0 provides evidence for convergence.

The relationship between the growth rates of emissions and GDP per capita is potentially

endogenous. Thus, we follow Barro and Sala-i Martin (1992) and instrument the growth

rate of GDP per capita with its growth rate in the previous period, denoted L(gi,t,s), where

L(·) is the lag operator.22

21 Ordás Criado et al. (2011) test for convergence in sulfur oxides and nitrogen oxides. They regressed
the average growth rates of emissions over the period t − 5 to t on the level of emissions at the initial
period of the growth rate (t − 5), the growth rate of GDP over t − 5 and t, GDP in t − 5, and time
and individual dummies by OLS and a non-parametric model. The authors also addressed endogeneity
between CO2 emissions and GDP by instrumenting with GDP and its growth rate lagged 5 periods (as
in Barro and Sala-i Martin 1992). They did not find evidence for heteroscedasticity in the estimation
results.

22 For the first period in our sample, 1997–2001, we use the growth rate for a period of the same length,
1993–1997.
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The priors for the parameters in (1)–(2) are collected in the following set of equations:

β, π0, π1, λr, δt, αiv, βiv ∼ N(0, φ) (4)

αi ∼ N(0, ψ) (5)

βj ∼ (1− γj)N(0, κ20) + γjN(0, κ21) (6)

γj ∼ Bernoulli(p) (7)

The priors of the parameters β, π0, π1, λr, δt, αiv, and βiv follow a normal distribution with

zero mean and precision φ = 0.2.23 We estimate the individual effects using the dummy

variables approach, where αi is normally distributed with precision ψ = 0.5.24 An intercept

of the model can be retrieved as α = 1
N

∑N
i αi. Three aspects of the prior elicitation

deserve special explanation: the shrinkage prior for the specific groups considered, the

prior of the degrees of freedom of the Student–t, and the prior for the errors’ covariance

matrix in the structural IV model.

Equations (6)–(7) characterize a hierarchical SSVS shrinkage prior (see George and Mc-

Culloch, 1993) that grants flexibility for the data to discriminate among models including

group-specific convergence dynamics (for EU, OECD, and Annex I membership). Each

group-specific prior on βj is modeled using a mixture of two normals with different preci-

sions κ20 and κ21. κ
2
0 > κ21 so that when γj = 0, βj is restricted to be estimated around 0,

whereas when γj = 1, βj remains unrestricted. We set κ20 = 10 and κ21 = 1. To reflect the

absence of prior beliefs about the existence of specific group convergence we set p = 0.5.

The model (1)–(3) allows for heteroscedasticity in the error terms. It follows from (3) that

the vector of errors is distributed as a bivariate Student–t with mean vector µ = (0, 0)′,

and covariance matrix ν(ν−2)−1Σ, given ν > 2 and Σ is a 2×2 positive definite symmetric

matrix. The degrees of freedom parameter ν is estimated endogenously with prior

ν = b1/uc (8)

u ∼ U(0,m) , (9)

where the function b1/uc rounds the values of ν to the nearest integer to 1/u. U in equation

(9) stands for an uniform distribution where the parameter m is set to 0.3, such that ν is an

integer within the interval [3,∞) (see Gelman and Hill, 2007). The estimation of ν renders

the specification in (1)–(3) rather flexible. Small values of ν will yield heteroscedasticity-

23 The precision is defined as the inverse of the variance. A precision of 0.2 implies a variance of 5.
24 Note that the precision of the individual dummies is larger than the precision of the rest of the param-

eters, as suggested e.g. by Lancaster (2008).
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robust parameter estimates, while as ν increases the errors’ distribution will approach

normality (homoscedasticity).25

In order to complete the prior for the covariance matrix in (3), we propose a Cholesky-

based prior for Σ. Lopes and Polson (2014) have shown the better performance of this type

of prior compared to the more widely used approach of specifying an inverted Wishart

prior for Σ for IV-models in the context of normal-distributed errors.26 More specifically,

we model the components of the error vector based on the recursive conditional regressions

arising from the Cholesky decomposition of Σ = ADA′, such that D = diag(Σ1|2,Σ22)

and A is an upper triangular matrix with ones in the main diagonal and upper triangular

component a12 = Σ12/Σ22. Thus, equation (3) can be re-written in recursive conditional

form, using the specification of the conditionals of a multivariate Student–t:27

ε1|2,it ∼ t(a12ε2,it,Σ1|2, ν + d2) (10)

ε2,it ∼ t(0,Σ22, ν) , (11)

where Σ11 = Σ1|2 + Σ2
12/Σ22, and d2 = 1 is the dimension of ε2,it. We must specify priors

for Σ22, the conditional variance Σ1|2, and for the parameter a12, which calibrates the

strength of the correlation between ε1,it and ε2,it. We assign Σ−122 and Σ−11|2 a gamma prior

with shape and scale parameters a, b = 0.001 so that we remain uninformative about the

precision of the model. a12 follows a normal prior centered at zero and with precision

τ = 0.2.

Σ−122 ,Σ
−1
1|2 ∼ Γ(a, b) (12)

a12 ∼ N(0, τ) (13)

A Markov Chain Monte Carlo (MCMC) algorithm is used to carry out Bayesian inference.

Standard Gibbs-sampling can be applied to all priors specified, including the SSVS prior,

25 We regard the priors for the parameters of interest (β, π0, π1, λj , δt, αiv, βiv, αi, βj) as informative.
Geweke (1993) shows that under informative (normal) priors for the slopes, both the first and the
second moments of the slopes exist. When the priors of the slopes are uninformative, ν > 2 ensures
existence of the first moments, while ν > 4 ensures existence of the second moments.

26 Cholesky-based priors have been applied to high dimensional stochastic volatility models (Lopes, 2011),
longitudinal models (Pourahmadi, 1999), and IV-models in the context of normal distributions (Lopes
and Polson, 2014). Alternatively, we could use an inverted Wishart prior for Σ, Σ ∼ IW (v0,Σ0),
with parameters v0 and Σ0 (we explain the derivation of the IV-prior in terms of covariance matrices,
because this is common in the literature). Priors for covariance matrices and variances have usually been
addressed by means of inverted Wishart and inverted Gamma distributions, respectively, while Wishart
or Gamma distributions have been used as priors for precision matrices and precisions. Wishart priors
have been extensively used in the framework of Bayesian instrumental variable models under normal-
distributed errors (see e.g. Kleibergen and Zivot, 2003; Lancaster, 2008; Rossi, 2005).

27 See Nadarajah and Kotz (2005) for the characterization and properties of the multivariate Student–t
distribution.
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equations (6)-(7), the degrees of freedom parameter, equations (8)-(9), and the Cholesky-

based priors for covariance of the t-distributed error terms, equations (12)-(13).28 The vec-

tor of parameters to estimate is P = (β, π0, π1, λr, δt, αi, αiv, βiv, βj , γj , ν,Σ
−1
22 ,Σ

−1
1|2, a12).

We implement three Markov chains from which, after a burn-in of 7.5 · 105 draws, we

retain a posterior sample of 7.5 · 105 draws each.29 We apply a thinning of 3, ending

up with a mixed posterior sample of 7.5 · 105 draws. We average across the posterior

sample to calculate the posterior means, standard errors and quantiles of the coefficients,

and the posterior inclusion probabilities (PIP) of the coefficients associated with specific

group convergence. The PIPs of the coefficients for group convergence show the posterior

probability of observing specific dynamics associated with those groups.

It should be noted that the model proposed is a dynamic panel model. Nickell (1981)

showed that incidental parameters yield inconsistent OLS or Maximum Likelihood (ML)

estimates in dynamic panels with short time dimension. The phenomenon is a consequence

of having a limited number of observations from which each incidental (individual-specific)

parameter is estimated, which in turn contaminates the estimation of the common param-

eters and, in particular, of the dynamic (autoregressive) parameter.30 The literature has

proposed alternative estimators with the aim of correcting Nickell´s (1981) bias. In par-

ticular, four lines have been developed—IV estimators, generalized method of moments

(GMM) estimators, analytical corrections for the least squares dummy variable (LSDV)

estimator, and bootstrap-based bias corrected estimators (see Everaert and Pozzi, 2007,

for a review of these lines). In particular, Everaert and Pozzi (2007) put forward a bias

correction procedure for the LSDV estimator based on the iterative boostrap proposed by

Tanizaki (2000; 2004, Ch. 5). Everaert and Pozzi (2007) carried out a comparison with the

other methods available in the literature in a Monte Carlo experiment, and found that the

bootstrap-corrected LSDV estimator performs as well as analytical corrections in terms

of bias, while it is easier to implement than those, and outperforms GMM estimators in

samples with small time dimension.

Nickell´s (1981) bias affects the likelihood estimator in the context of dynamic panels.

Since the Bayesian estimation approach is partially based on the likelihood of the model,

Bayesian posterior estimates may inherit some bias from it. However, the use of informa-

28 See George and McCulloch (1993) for details on the Gibbs sampler for the SSVS prior, Geweke (1993)
for the Gibbs sampler applied to Student–t parameters, and Lopes and Polson (2014) for the details of
the Gibbs sampling for IV-estimation in the context of the normal distribution.

29 That was sufficient for the chains to show mixing and the estimates of the coefficients to convergence
to their ergodic distribution.

30 The concept of incidental parameter and the problem of limited information to estimate incidental
parameters was first defined by Neyman and Scott (1948). Lancaster (2000) and Moon et al. (2015)
offer rigurous treatments of the incidental parameters problem.
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tive priors for the individuals effects and the slope parameters may atenuate the effect of

the likelihood-inherited bias in the Bayesian estimator.

Several authors have studied the analogies between non-parametric and Bayesian boot-

strap approaches. A connection between the non-parametric bootstrap and Bayesian in-

ference has been suggested, for example, by Rubin (1981), Efron (1982), and Newton and

Raftery (1994). Hastie et al. (2009, Ch, 8) characterized the non-parametric bootstrap

as a nonparametric, noninformative approximation to Bayesian inference implemented by

perturbing the data instead of perturbing the parameters. Weng (1989) showed that even

though the Bayesian and non-parametric bootstraps can be interchanged in a first-order

sense, they are different in a second-order asymptotic sense. Newton and Raftery (1994)

and Efron (2011) have shown the connection between both the non-parametric and the

parametric bootstrap and MCMC, respectively.

In the context of dynamic panels, Maddala and Hu (1996) showed Monte Carlo evidence

that the iterative Bayesian estimator resulted in the smallest mean square error (MSE)

in dynamic panels with individual random coefficients when compared to some classical

estimators. Hsiao et al. (1999) also conducted a Monte Carlo study to investigate the small

sample performance of the estimators of the means of short-run coefficients in the dynamic

panel data model with coefficient heterogeneity, where there is no consistent estimator of

the mean parameters unless N and T both tend to infinity. In such models, the authors

found that the Bayesian approach performs fairly well even when T is small, whereas

indicated that some consistent estimators may have disastrous implications in panels with

very small T . In this vein, the non-parametric iterative bootstrap implemented by Everaert

and Pozzi (2007) and the Gibbs sampling approach used to carry out inference from our

econometric model present a high degree of analogy. Our posterior inference is based on

the mean of the mixed posterior sample resulting from the Gibbs sample after thinning.

In addition, it is based on informative priors. Therefore, we expect that our posterior

estimates do not suffer from considerable bias.

As a robustness check, we estimate an alternative (homoscedastic) model where the priors

in equations (3), (10), and (11) are replaced, respectively, by

(ε1,it, ε2,it) ∼ N(0,Σ) (14)

ε1|2,it ∼ N(a12ε2,it,Σ1|2) (15)

ε2,it ∼ N(0,Σ22) (16)
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where again a12 = Σ12/Σ22 and the equations (8) and (9) for the prior of the degrees

of freedom ν are eliminated. Therefore, the model collapses to the Bayesian IV-model

proposed by Lopes and Polson (2014). The Gibbs sampling algorithm for estimating this

model’s posterior is simplified by deleting the steps corresponding to the marginal density

of ν.

5 Results

We implement two types of IV models with t-distributed errors that differ in the inclusion

or exclusion of individual-specific dummy variables. The DV-conditional heteroscedastic

model includes a set of economic, political and structural controls, and individual dummy

variables. It constitutes a test for (fully) conditional convergence. The conditional het-

eroscedastic model does not include individual effects and is only conditioned on economic,

political and structural variables. This model provides evidence on a stronger assumption

about convergence than the DV-conditional heteroscedastic model, as it approximates the

concept of convergence by global convergence.

Table 1 summarizes the results of the IV model with t-distributed errors and individual

dummy variables (DV-conditional heteroscedastic model). The results of the conditional

heteroscedastic model (without individual dummies) are available in Table 2.31 The four

columns of the tables report the posterior means of the parameter estimates from the out-

come (upper panel) and the selection equations (middle panel), the PIPs of the regressors

associated with specific-group convergence and the half-life derived from the convergence

estimates (lower panel), the estimated degrees of freedom (ν) for the t-distribution, the

Bayesian R2 and the number of observations of the regressions for the four CO2 inventories

(CO2 per capita and per value added for production and consumption inventories). The

asterisks next to the parameter estimates indicate whether the parameter is different from

zero at the 99%, 95% or 90% (equal-tailed) credibility interval (CI).

The estimated degrees of freedom for the t-distribution (ν) turn out to be very low (be-

tween 4 and 6), pointing towards the existence of heteroscedasticity for each of the four

inventories. For the conditional model in Table 2 the degrees of freedom are slightly

lower than for the DV-conditional model in Table 1. The Bayesian R2 are relatively high

throughout, indicating that the included regressors explain a large part of the variation

in the growth rates of all four inventories. In particular, our DV-conditional convergence

model explains 85% of the variation in growth of CO2 emissions per capita embodied in

production activities, while it accounts for 73%− 75% of the variation in the growth rate

31 Furthermore, we report the results of the DV-conditional and conditional homoscedastic models (normal-
distributed errors with and without individual dummies) in Tables A.4 and A.5 in the Appendix.
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of emissions per capita embodied in consumption inventories and in emissions per value

added. The explanatory power of the conditional model is around 10%− 15% lower.

In all specifications we instrument the growth rate of income per capita in order to account

for potential reverse causality (see Barro and Sala-i Martin 1992). The results of the

selection equations are shown in the middle panel of the tables. The coefficient of lagged

income per capita growth, which we use as an instrument, is positive with a CI of 99%

in each specification, pointing towards a high relevance of this variable for explaining the

contemporaneous growth rate of income per capita. At the same time it is exogenous,

as emission growth cannot affect on lagged growth rates of income per capita. aiv, the

strength of the correlation between the errors of the two equations, is relatively low but

for the carbon emissions per value added derived from production activities.

5.1 DV-conditional convergence

For the DV-conditional convergence model in Table 1, the posterior mean of the parameter

connected to lagged emissions (convergence parameter) reveals a negative effect of lagged

emissions on emission growth for all four emission inventories, at a CI level of 99%. This

provides strong evidence for convergence in all four CO2 emission inventories. The mag-

nitudes of the posterior mean of the convergence parameter are larger in absolute value

for emissions per capita than for carbon intensities.

Given the size of the convergence parameters, β, it is possible to calculate the time needed

for countries to halve their emissions gap towards their country-specific steady states.

Assuming that the average emission trajectories observed in the sample remain unchanged,

the half-life of emissions amounts to 3.1 years for CO2 per capita production, 2.8 years for

CO2 per capita consumption, 3.2 years for CO2 intensity production, and 5 years for CO2

intensity consumption.32 These rather fast convergence rates implied by our estimates are

in line with the findings of Westerlund and Basher (2008) and Jobert et al. (2010) for CO2

per capita from production. Westerlund and Basher (2008) reported a half-life of CO2

emissions per capita of between 3.1 and 6.1 years in a sample of developed and developing

countries.33 Jobert et al. (2010) found the half-life of CO2 emissions to be between 2.2

and 3.4 years for various OECD countries.34 Thus, our results confirm that the findings

32 The half-life provides an indication of the speed of convergence. It is defined as the time required to
eliminate half of the initial gap between actual emissions levels and the steady state. The half-life is
calculated as ln(0.5)

1−e(−β) (see Romer, 2012, p. 26).
33 The half-life in their sample of developed countries was estimated to lie between 4.2 and 6.2 years; this

is longer than the half-life estimated in their pooled sample including developing countries.
34 These figures correspond to estimates of conditional convergence. For unconditional convergence the

authors reported a half-life between 4 and 8.5 years.

14



(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.2853 * -0.1822 -0.1640 -0.0679
Ln(emissions) -0.2033 *** -0.2223 *** -0.1959 *** -0.1305 ***
Ln(emissions)·EU 0.0005 -0.0001 -0.0122 -0.0039
Ln(emissions)·OECD 0.0003 -0.0007 -0.0021 -0.0008
Ln(emissions)·Annex I -0.0006 -0.0004 0.0003 0.0002

Ln(income pc) 0.0776 *** 0.0741 *** -0.0006 0.0019
Income pc growth 0.3734 0.5522 -1.2302 ** -0.7552
Ln(pop. density) -0.122 *** -0.1358 ** 0.0493 0.0350
Fossil rents 0.0019 ** 0.0028 *** -0.0002 -0.0013
Nuclear % -0.0012 -0.0001 -0.0030 -0.0018
Fossil fuels % 0.0002 0.0004 -0.0003 -0.0006
Openness 0.0000 -0.0002 0.0000 0.0000
Political regime -0.0022 ** 0.0001 -0.0049 ** -0.0024
VA energy % 0.0003 0.0006 0.0007 0.0005
VA light manufacturing % 0.0007 0.0008 0.0013 0.0005
VA heavy manufacturing % 0.0009 0.0013 * 0.0002 -0.0011
VA textiles % 0.0009 -0.0010 0.0036 -0.0016
VA water services % 0.0037 0.0058 0.0019 -0.0064
VA construction % -0.0029 ** -0.0014 -0.0039 * -0.0023
VA trade and transport % 0.0007 0.0008 0.0012 0.0007
VA other services % 0.0016 *** 0.0012 ** 0.0025 *** 0.0016 **
2004 0.0218 *** 0.0272 *** -0.0629 *** -0.0861 ***
2007 0.0085 0.0238 *** -0.0994 *** -0.1072 ***
2011 0.033 * 0.0257 -0.0762 ** -0.1058 ***
Individual dummies yes yes yes yes

Selection equation for income pc growth

Constant 0.0240 *** 0.0240 *** 0.0239 *** 0.0239 ***
Income pc growth, lagged 0.3361 *** 0.3337 *** 0.3349 *** 0.3356 ***
aiv 0.1106 0.0547 1.1206 ** 0.7065

PIP EU 0.0039 0.0049 0.2247 0.0954
PIP OECD 0.0132 0.0070 0.0528 0.0204
PIP Annex I 0.0033 0.0033 0.0197 0.0159

Half-life 3.0746 2.7843 3.2030 4.9724

ν 4.9775 5.3817 5.9000 5.4898
R2 0.8479 0.7482 0.7403 0.7326
N 312 312 312 312

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth
enter in lagged values. The Half-life is calculated as ln(0.5)/(1 − e−β). We evaluate all explanatory
variables at their means.

Table 1: Results t-distribution, DV-conditional model
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of earlier studies covering a smaller number of countries also hold for sample of countries

comprising the whole world.

We do not find support for the existence of specific convergence dynamics for EU, OECD

or Annex I members. The PIPs of the group-specific regressors are usually smaller than

10%, with the exception of the group of EU countries in the model for CO2 production per

value added, with a PIP of 22% (column (3)). This implies that the estimation algorithm

tends to exclude group-specific dynamics. Consequently, the slope estimates of the group-

specific regressors are very low in magnitude for all inventories and not different from zero

at any of the CI levels considered.

Some of the control variables capturing a country’s economic and institutional character-

istics have a significant effect on emission growth. Higher per capita income is associated

with higher growth rates of CO2 per capita, while a higher growth rate of income per capita

lowers the growth rate of emission intensity of production activities. This highlights, on

the one hand, the role of energy—and thus energy-derived CO2 emissions—as a necessary

input for production and consumption patterns, but, on the other hand, also shows that

economic growth is connected to some carbon efficiency gains. Population density has a

negative effect on the growth rate of CO2 per capita. The opposite is true for the share

of rents from fossil fuel production in GDP. With respect to the variables related to the

energy mix of an economy, there are no effects from the shares of fossil fuel or nuclear

energy in total energy used. Noteworthy, trade openness does not affect emissions growth

for any of the inventories considered. Yet, democratic political regimes are connected to

lower growth rates in CO2 embodied in production; that is, democracy may be a channel

through which citizens’ preferences are revealed. Regarding the sectoral shares in value

added, only three sectors are relevant at a CI level of at least 90%. These are heavy

manufacturing, with a positive effect on the growth rate of CO2 per capita embodied in

consumption, the construction sector, which lowers the growth rate of both production-

based CO2 emissions per capita and per value added, and services not included elsewhere,

which are connected to higher emission growth rates for all inventories considered.35 The

time dummies are different from zero at the selected credibility intervals in most cases.

For carbon emissions per capita, they point towards an increase in emissions from 2001

onwards as compared to the reference period 1997–2001. For CO2 per value added, by

contrast, the results indicate a decrease in emission intensities over time, with a slight

rebound during 2007–2011 for production inventories.

35 The negative impact of the construction sector may be related to the low carbon intensity of this sector
during the period analyzed. It should be noted that estimations do take the value added share of agri-
culture as the benchmark sector and exclude it from the specifications in order to avoid multicollinearity.
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5.2 Conditional convergence without individual dummies

The DV-conditional model analyzed above includes individual-specific effects and is thus

concerned with convergence towards individual-specific steady-states. A stronger assump-

tion is that convergence occurs towards a common steady-state, which is determined by

economic and political factors. In order to test for international convergence towards a

common level of emissions per capita or per value added, we also estimate models with-

out individuals specific effects. The results from conditional convergence models without

individual dummies, displayed in Table 2, show a slightly different pattern of conver-

gence. The convergence parameter (of lagged emissions) is still relevant at the 99% CI

level for CO2 intensities (columns (3) and (4)), but it a has much lower value than in

the DV-conditional model ; it indicates a half-life of 20 and 24 years for the CO2 intensity

of production and consumption, respectively. For CO2 per capita inventories (columns

(1) and (2)) the convergence parameter turns irrelevant, pointing towards the absence of

convergence. Group-specific convergence patterns remain unimportant, with PIPs that

are even lower than for the conditional models (below 2%).

Also for some of the control variables the CI changes. While some variables turn irrelevant

for explaining emissions growth—income per capita, population density, heavy manufac-

turing, construction—some others gain relevance, namely the share of fossil fuels in energy

production, the share of value added in the energy sector, textiles, and trade and trans-

port. Surprisingly, higher fossil rents in GDP are connected to a lower growth rate of the

CO2 intensity of consumption patterns.

To sum up, our findings provide strong evidence for convergence towards country-specific

steady states for all four CO2 inventories (DV-conditional model). Nevertheless, interna-

tional convergence towards common steady states that are determined by political and

economic structures cannot be detected for CO2 emissions per capita (conditional model)

and global conditional convergence towards common steady states can only be confirmed

for CO2 intensities. Convergence towards these global conditional steady states is, how-

ever, much slower than the convergence towards country-specific steady states in CO2

intensities.

The evidence for convergence in CO2 intensities irrespective of the specification used to

test for convergence is consistent with the existence of carbon efficiency gains of pro-

duction activities and, through global production networks, of consumption patterns, as

observed for 1997–2011 by Fernández-Amador et al. (2016). In addition, carbon inten-

sities of production activities show faster convergence than those associated with final

consumption. This suggests that technology transfer may induce technological spillovers

and technology adoption, which might play an important role for the convergence dynam-
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.1235 *** -0.0812 * -0.0452 0.0008
Ln(emissions) -0.0030 -0.0050 -0.0345 *** -0.0286 ***
Ln(emissions)·EU 0.0002 0.0002 -0.0005 -0.0005
Ln(emissions)·OECD 0.0002 0.0003 0.0001 0.0000
Ln(emissions)·Annex I 0.0004 -0.0005 0.0006 0.0004

Ln(income pc) -0.0008 -0.0004 -0.0007 0.0019
Income pc growth 0.7050 *** 0.7517 ** 0.4723 0.9728 **
Ln(pop. density) -0.0010 -0.0025 -0.0011 -0.0010
Fossil rents 0.0004 0.0002 -0.0007 -0.0009 *
Nuclear % -0.0002 0.0000 0.0000 0.0001
Fossil fuels % 0.0000 0.0000 0.0005 *** 0.0003 **
Openness -0.0001 0.0000 -0.0001 -0.0001
Political regime -0.0001 0.0007 -0.0030 *** -0.0019 **
VA energy % 0.0008 * 0.0006 0.0004 0.0001
VA light manufacturing % 0.0009 0.0005 0.0010 -0.0003
VA heavy manufacturing % 0.0008 0.0001 0.0000 -0.0010
VA textiles % 0.0066 *** 0.0054 *** 0.0051 * 0.0023
VA water services % 0.0014 0.0014 -0.0032 -0.0075
VA construction % 0.0009 -0.0004 0.0032 0.0017
VA trade and transport % 0.0011 ** 0.0007 0.0007 -0.0001
VA other services % 0.0014 *** 0.0008 0.0006 -0.0003
2004 0.035 *** 0.0407 *** -0.0769 *** -0.0886 ***
2007 0.014 ** 0.0218 *** -0.0888 *** -0.0954 ***
2011 0.0383 ** 0.0238 -0.0415 -0.0822 ***
Individual dummies no no no no

Selection equation for income pc growth

Constant 0.0238 *** 0.0240 *** 0.0239 *** 0.0238 ***
Income pc growth, lagged 0.3429 *** 0.3354 *** 0.3361 *** 0.3384 ***
aiv -0.0788 0.0998 -0.3062 -0.6815

PIP EU 0.0019 0.0040 0.0092 0.0073
PIP OECD 0.0019 0.0023 0.0109 0.0071
PIP Annex I 0.0021 0.0032 0.0151 0.0066

Half-life 19.7466 23.8910

ν 4.1685 5.1104 5.2182 5.1730
R2 0.7541 0.6100 0.6049 0.6598
N 312 312 312 312

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth
enter in lagged values. The Half-life is calculated as ln(0.5)/(1 − e−β). We evaluate all explanatory
variables at their means.

Table 2: Results t-distribution, conditional model
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ics detected. Notwithstanding, trade openness does not seem to drive this result. By

contrast, consumption-based CO2 emissions per capita converge faster than emissions per

capita embodied in production in the DV-conditional model. This result is consistent with

converging consumption bundles (per capita), as a result of increasing globalization and

the homogenization of consumer tastes.

Although some previous studies have found evidence for group-specific convergence pat-

terns for OECD and EU members (e.g. Aldy, 2006; Nguyen, 2005; Ordás Criado and

Grether, 2011; Panopoulou and Pantelidis, 2009; Westerlund and Basher, 2008), none of

our models provides evidence for differences in convergence dynamics implied by mem-

bership in the OECD, EU, or Annex I of the Kyoto protocol. Therefore, climate change

policies of industrialized countries such as the OECD or the EU have not been effective

in accelerating emission convergence among developed economies (see also Westerlund

and Basher, 2008, who found slower convergence for OECD countries). Also the binding

commitments of the Kyoto Protocol have been largely ineffective in accelerating emission

convergence among Annex I countries (see also Ordás Criado and Grether, 2011).

6 Conclusion and discussion

We tested for international convergence in CO2 per capita and per value added derived

from production and consumption patterns across a global sample of countries for the

1997–2011 period. In so doing, we put forward a Bayesian test for convergence that is

robust to heteroscedasticity, accounts for endogeneity between the growth rate of CO2

emissions and economic growth, and allows for the existence of group-specific convergence

among members of the EU, the OECD, and the Annex I of the Kyoto Protocol.

Our findings suggest that all four emission inventories converge towards country-specific

steady states. International convergence towards global steady states determined by eco-

nomic and political structures is only found for CO2 intensities. Although global conver-

gence in carbon intensities provides a first step in contributing to convergence in per capita

emissions, these convergence forces are not strong enough to promote convergence in CO2

per capita. These results are consistent with the findings of the EKC literature for carbon

emissions that composition and technique effects are outweighted by scale effects (see e.g.

Fernández-Amador et al., 2017). The short half-lives calculated show that both emissions

per capita and intensities are close to their country-specific steady states. However, actual

levels of carbon emissions have proven to be unsustainable. This highlights the current

incompatibility between economic growth and the 2◦C target, and the need for further

environmental policies to keep global warming under control while maintaining reasonable

economic growth rates.
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The historical responsibility for atmospheric CO2 concentrations corresponds to developed

economies. However, those economies, represented in our sample by three groups—OECD,

EU, and the countries that ratified the Annex I of the Kyoto Protocol—have not expe-

rienced faster group convergence. This lack of specific patterns of convergence among

developed economies, despite the environmental policies implemented in these countries,

shows the difficulties in achieving effective agreements and policies to take action against

global warming.

The absence of international convergence in emissions per capita, which are already beyond

sustainability targets, poses doubts on the feasibility of the targets agreed without a

significant change in the international institutional framework and strict implementation of

new, stronger abatement policies. The lack of a stabilization of emissions in industrialized

economies at sustainable emission levels may discourage developing economies to accept

a cap on emissions. In addition, the idiosyncratic, country-specific convergence dynamics

in emissions may further complicate the design of multilateral policy frameworks aimed at

global emissions reduction. Even though there is an urgency for multilateral approaches

to fight climate change that encompass developed and developing countries, developed

economies should implement national environmental policies to promote carbon efficiency

and less polluting sources of energy in order to reinforce the international action against

global warming.
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N Mean Std. dev Min Max

Dependent variables

Growth CO2 pc prod. 312 0.0101 0.0594 -0.3357 0.2664
Growth CO2 pc cons. 312 0.0144 0.0576 -0.1940 0.2483
Growth CO2 va prod. 312 -0.0275 0.0850 -0.3178 0.3219
Growth CO2 va cons. 312 -0.0217 0.0735 -0.2316 0.2623

Control variables

Ln(CO2 pc prod.) 312 1.1993 1.4195 -2.6818 3.6089
Ln(CO2 pc cons.) 312 1.3106 1.3204 -1.9832 3.5690
Ln(CO2 va prod.) 312 -0.0727 0.7463 -1.8546 2.2377
Ln(CO2 va cons.) 312 0.0362 0.5812 -1.0788 2.0602
EU 312 0.3013 0.4596 0.0000 1.0000
OECD 312 0.3686 0.4832 0.0000 1.0000
Annex I 312 0.3429 0.4755 0.0000 1.0000
Ln(income pc) 312 12.5369 1.6209 8.9704 16.5477
Income pc growth 312 0.0376 0.0295 -0.1096 0.1497
Ln(pop. density) 312 4.2848 1.4593 0.8781 8.8357
Openness 312 0.8261 0.4765 0.1761 3.2739
Political regime 312 6.2276 5.2041 -7.0000 10.0000
Nuclear % 312 0.1019 0.1833 0.0000 0.8357
Fossil % 312 0.5732 0.3111 0.0000 1.0000
Fossil rents 312 0.0409 0.0823 0.0000 0.4756
VA energy % 312 0.1467 0.1801 0.0001 0.7603
VA light manufacturing % 312 0.0705 0.0462 0.0003 0.3640
VA heavy manufacturing% 312 0.1231 0.0607 0.0015 0.4548
VA textiles % 312 0.0191 0.0195 0.0000 0.1267
VA water services % 312 0.0032 0.0027 0.0000 0.0233
VA construction % 312 0.0473 0.0308 0.0001 0.1596
VA trade and transport % 312 0.2256 0.1291 0.0424 0.7712
VA other services % 312 0.2825 0.1790 0.0008 0.6331

Table A.3: Descriptive statistics
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.1932 -0.1222 -0.1502 -0.0832
Ln(emissions), lagged -0.2133 *** -0.2347 *** -0.1971 *** -0.1347 ***
Ln(emissions)·EU, lagged 0.0001 -0.0002 -0.0097 -0.0060
Ln(emissions)·OECD, lagged 0.0000 -0.0002 -0.0021 -0.0006
Ln(emissions)·Annex I, lagged 0.0000 0.0001 0.0002 0.0001

Ln(Income pc), lagged 0.0782 *** 0.0717 *** -0.0038 -0.0048
Income pc growth 0.1227 0.2985 -1.3502 ** -0.8494
Pop. Density -0.1434 *** -0.1405 *** 0.0569 0.0584
Fossil rents 0.0021 ** 0.0032 *** -0.0005 -0.0013
Nuclear % -0.0006 0.0003 -0.0039 * -0.0022
Fossil fuels % 0.0003 0.0005 -0.0004 -0.0003
Openness 0.0000 0.0000 0.0000 -0.0001
Political regime -0.0023 ** 0.0006 -0.0055 *** -0.0026
VA energy % -0.0002 0.0004 0.0006 0.0004
VA light manufacturing % 0.0007 -0.0001 0.0013 -0.0004
VA heavy manufacturing % 0.0007 0.0011 0.0005 -0.0007
VA textiles % 0.0009 -0.0013 0.0039 -0.0018
VA water services % 0.0073 0.0044 0.0048 0.0010
VA construction % -0.0031 ** -0.0007 -0.0045 ** -0.0034
VA trade and transport % 0.0005 0.0007 0.0013 0.0007
VA other services % 0.0015 *** 0.0011 * 0.0027 *** 0.0014 *
2004 0.0296 *** 0.0258 *** -0.0554 *** -0.0779 ***
2007 0.0216 *** 0.0301 *** -0.0888 *** -0.0928 ***
2011 0.0554 ** 0.0315 -0.0647 * -0.1151 ***
Individual dummies yes yes yes yes

Selection equation for income pc growth

Constant 0.0248 *** 0.0248 *** 0.0245 *** 0.0246 ***
Income pc growth, lagged 0.3001 *** 0.3006 *** 0.3070 *** 0.3040 ***
aiv 0.2433 0.2131 1.2112 ** 0.7520

PIP EU 0.0116 0.0074 0.1946 0.1295
PIP OECD 0.0252 0.0115 0.0544 0.0284
PIP Annex I 0.0046 0.0052 0.0201 0.0172

Half-life 2.9154 2.6203 3.1815 4.8071

R2 0.6412 *** 0.5331 *** 0.5795 *** 0.5093 ***
N 312 312 312 312

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth
enter in lagged values. The Half-life is calculated as ln(0.5)/(1 − e−β). We evaluate all explanatory
variables at their means.

Table A.4: Results normal distribution, DV-conditional model
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(1) (2) (3) (4)
CO2 pc prod. CO2 pc cons. CO2 va prod. CO2 va cons.

Outcome equation

Constant -0.1533 ** -0.1230 ** -0.0243 0.0330
Ln(emissions), lagged -0.0028 -0.0079 * -0.0395 *** -0.0305 ***
Ln(emissions)·EU, lagged 0.0002 0.0003 0.0006 0.0002
Ln(emissions)·OECD, lagged -0.0003 -0.0004 0.0001 -0.0003
Ln(emissions)·Annex I, lagged -0.0001 0.0004 0.0004 0.0000

Ln(Income pc), lagged 0.0001 0.0010 0.0009 0.0019
Income pc growth 0.7720 * 0.6318 0.3172 0.6959
Pop. Density -0.0024 -0.0040 -0.0050 -0.0040
Fossil rents 0.0006 0.0002 -0.0006 -0.0009
Nuclear % -0.0002 0.0001 0.0000 0.0000
Fossil fuels % 0.0001 0.0000 0.0007 *** 0.0004 **
Openness -0.0001 0.0000 -0.0002 * -0.0001
Political regime -0.0003 0.0008 -0.0037 *** -0.0028 ***
VA energy % 0.0004 0.0009 -0.0003 -0.0002
VA light manufacturing % 0.0004 0.0004 0.0005 -0.0004
VA heavy manufacturing % 0.0013 * 0.0004 -0.0001 -0.0009
VA textiles % 0.0087 *** 0.0067 *** 0.0052 * 0.0012
VA water services % 0.0094 0.0072 -0.0022 -0.0071
VA construction % 0.0001 0.0001 0.0014 0.0014
VA trade and transport % 0.0013 ** 0.0012 * 0.0005 0.0000
VA other services % 0.0017 *** 0.0012 ** 0.0006 -0.0002
2004 0.0511 *** 0.0418 *** -0.0678 *** -0.0851 ***
2007 0.0257 *** 0.0292 *** -0.0826 *** -0.0892 ***
2011 0.0638 ** 0.0216 -0.0210 -0.0842 ***
Individual dummies no no no no

Selection equation for income pc growth

Constant 0.0247 *** 0.0248 *** 0.0247 *** 0.0247 ***
Income pc growth, lagged 0.3019 *** 0.3012 *** 0.3023 *** 0.3031 ***
a iv -0.2451 0.1027 -0.1682 -0.4731

PIP EU 0.0122 0.0135 0.0175 0.0119
PIP OECD 0.0044 0.0066 0.0151 0.0129
PIP Annex I 0.0044 0.0054 0.0159 0.0106

Half-life 87.3940 17.2037 22.3813

R2 0.2057 *** 0.2494 *** 0.2701 *** 0.3615 ***
N 312 312 312 312

Note: * CI 90%, ** CI 95%, *** CI 99%. All variables but group dummies and income pc growth
enter in lagged values. The Half-life is calculated as ln(0.5)/(1 − e−β). We evaluate all explanatory
variables at their means.

Table A.5: Results normal distribution, conditional model
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Pettersson, F., Maddison, D., Acar, S., Söderholm, P., 2014. Convergence of carbon dioxide emissions: A

review of the literature. International Review of Environmental and Resource Economics 7, 141–178.

Phillips, P., Sul, D., 2007a. Some empirics on economic growth under heterogenous technology. Journal of

Macroeconomics 29, 455–469.

Phillips, P., Sul, D., 2007b. Transition modelling and econometric convergence tests. Econometrica 75 (6),

1771–1855.

Pourahmadi, M., 1999. Joint mean-covariance models with applications to longitudinal data: Uncon-

strained parameterisation. Biometrika 86, 677–690.

Quah, D., 1993. Empirical cross-section dynamics in economic growth. European Economic Review 37 (2-

3), 426–434.

Quah, D., 1996. Empirics for economic growth and convergence. European Economic Review 40, 1353–

1375.

Ravallion, M., 2003. Inequality convergence. Economics Letters 80, 351–356.

Romer, D., 2012. Advanced Macroeconomics. McGraw-Hill.
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